If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-14x-51=0
a = 4.9; b = -14; c = -51;
Δ = b2-4ac
Δ = -142-4·4.9·(-51)
Δ = 1195.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-\sqrt{1195.6}}{2*4.9}=\frac{14-\sqrt{1195.6}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+\sqrt{1195.6}}{2*4.9}=\frac{14+\sqrt{1195.6}}{9.8} $
| 3p+4=-4p+21 | | 7p(p+3)+9=5(p-2)-3p | | 8-m/7=17 | | 7(5v+8)=26+5v | | 92=-4(2r5) | | -20=2(u-7)-8u | | 6.5-5(1+7f)=-21.5 | | 7(5v+8)=25+5v | | 3/5+f=7/5 | | 4y-17-11=180 | | 6x+1+20=90 | | -3(4-8m)=-156 | | 4y-7+2y=-3(y-1) | | 5w^2+42w-27=0 | | 10=a/9-4 | | 5-3(x+4)=4(x-7) | | n=15n+85 | | -2(5t-5)+7t=2t-4 | | (5w-3)(9+w)=0 | | 3v/13=20/39 | | 3g-6*(g-8)=42 | | 8(3n+4)=-160 | | 7t-t-5=5t-7 | | 8(y+4)-2(y-1)=70 | | 22+m=(2)m | | 3(6x+5)=2x+9 | | 18^x-2=16 | | 8/7*w=14 | | d+17/2=5(1/3) | | 1/R/t=1/R1+1/4R1 | | -(v-1)=-6v+6 | | 3/7m-1/7=5/14 |